Mitkä tekijät määräävät, käytetäänkö kaapelin johdinmateriaalina kuparia vai alumiinia?
Kaapelin johdinmateriaaleja valittaessa kuparin ja alumiinin käyttöön vaikuttavat pääasiassa seuraavat tekijät:
- Johtavuus
Kuparin johtavuus: Kuparin johtavuus on noin 100 % IACS (International Hehkutettu kuparistandardi), joka on paljon korkeampi kuin alumiinin johtavuus (noin 61 % IACS). Tämä tekee kuparista sopivamman skenaarioihin, jotka vaativat korkeaa johtavuutta.
Alumiinin johtavuus: Huolimatta alhaisemmasta johtavuudesta, alumiinin kevyt paino ja alhaisemmat kustannukset tekevät siitä kilpailukykyisen monissa skenaarioissa.
2. Mekaaniset ominaisuudet
Kuparin mekaaninen lujuus: Kuparilla on korkea vetolujuus, hyvä väsymiskestävyys, eikä se hajoa helposti taipuessa tai tärinässä. Se sopii skenaarioihin, jotka vaativat suurta mekaanista lujuutta (kuten hissikaapelit ja kaivoskaapelit).
Alumiinin mekaaninen lujuus: Alumiini on pehmeämpää ja sillä on huono väsymiskestävyys, ja se voi vaatia suuremman poikkileikkausalan kompensoidakseen sen mekaanisten ominaisuuksien puutetta.
3. Paino
Kuparin paino: Kupari on noin 70 % raskaampaa kuin alumiini, joten se ei välttämättä ole taloudellinen käytettäessä pitkiä matkoja tai keveyttä vaativissa tilanteissa.
Alumiinin paino: Alumiinin keveysominaisuudet tekevät siitä edullisemman painonpudotusta vaativissa tilanteissa, kuten ilmailu- ja voimansiirtolinjoissa.
4. Kustannukset
Kuparin hinta: Kupari on yleensä noin kolme kertaa kalliimpaa kuin alumiini, joten kuparikaapeleiden alkukustannukset ovat korkeammat.
Alumiinin hinta: Alumiinin kustannukset ovat alhaisemmat, mikä tekee siitä houkuttelevamman projekteille, joilla on rajoitettu budjetti.
5. Korroosionkestävyys
Kuparin korroosionkestävyys: Kuparilla on hyvä korroosionkestävyys useimmissa ympäristöissä, mutta se voi vaikuttaa rikkiä sisältäviin ympäristöihin.
Alumiinin korroosionkestävyys: Alumiinin pintaan muodostuu suojakalvokerros alumiinioksidia, mutta erityiskäsittelyä (kuten pinnoitusta) voidaan tarvita korkeassa kosteudessa tai happamissa ympäristöissä.
6. Sovellusskenaariot
Kuparisovellus: Soveltuu skenaarioihin, jotka vaativat suurta luotettavuutta ja suorituskykyä, kuten korkeajännitekaapelit, rakennusjohdot ja teollisuuslaitteet.
Alumiinisovellus: Käytetään enimmäkseen skenaarioissa, jotka vaativat kevyitä ja edullisia kustannuksia, kuten suurjännitesiirtojohdot ja ulkoilmakaapelit.
7. Kytkentä ja asennus
Kupariliitoksen suorituskyky: Kuparijohdotuksen luotettavuus on korkeampi, eikä liitoksia ole helppo löystyä tai ylikuumentua.
Alumiiniliitäntöjen suorituskyky: Alumiinijohtimet vaativat erityisiä liittimiä tai käsittelyjä (kuten virumisen ja hapettumisen estämistä) johdotuksen yhteydessä.
Mihin erityisiin skenaarioihin yleiset kaapelityypit (kuten pienjännitekaapelit, suurjännitekaapelit, valokuitukaapelit jne.) sopivat?
1. Pienjännitekaapeli
Ominaisuudet: Käyttöjännite on yleensä enintään 1 kV, johdinmateriaali on enimmäkseen kuparia tai alumiinia ja eristysmateriaali on yleensä PVC tai XLPE.
Sovellusskenaariot:
Rakennuksen sähkönjakelu: käytetään asuin- ja liikerakennusten sähkönjakoon, kuten valaistukseen, pistorasiaan ja muihin pienjännitelaitteisiin.
Teollinen käyttö: pienjännitelaitteiden liittäminen tehtaan sisällä.
Ohjauskaapeli: pienjänniteohjausjärjestelmä ja signaalinsiirto.
2. Keskijännitekaapeli
Ominaisuudet: Käyttöjännitealue on yleensä 1kV - 35kV, ja sitä käytetään usein paikallisissa jakeluverkoissa.
Sovellusskenaariot:
Kaupunkien sähkönjakelu: käytetään sähköenergian jakamiseen sähköasemilta toissijaisiin jakeluverkkoihin kaupungeissa tai teollisuusalueilla.
Teollisuusala: kuten virtalähde keskijännitelaitteisiin, kuten kaivoksiin ja satamiin.
Tuulivoiman tuotanto: yhdistä tuuliturbiinit ja sähköverkot.
3. Korkeajännitekaapeli
Ominaisuudet: Käyttöjännitealue on yleensä 35kV - 220kV ja enemmän, korkeat suunnitteluvaatimukset, ja eristemateriaalit ovat enimmäkseen XLPE- tai öljy-paperieristettä.
Sovellusskenaariot:
Pitkän matkan voimansiirto: käytetään suurjännitesiirtolinjoissa sähkön siirtämiseen voimalaitoksista kaupunkeihin.
Sähköasemaliitäntä: yhdistä voimalaitokset, sähköasemat ja jakeluverkot.
Raskaat teollisuuslaitteet: anna virtaa suurjännitelaitteille.
4. Ultra High Voltage Kaapeli
Ominaisuudet: Käyttöjännite ylittää 220 kV, tekniikka on monimutkaista ja yleensä käytetään kaasueristettä tai erityisiä eristysmateriaaleja.
Sovellusskenaariot:
Pitkän matkan voimansiirtojärjestelmä: alueiden väliset ja valtioiden väliset siirtolinjat.
Keskeiset energiahankkeet: kuten ydinvoimaloiden ja suurten vesivoimaloiden voimajohdot.
5. Optinen kuitukaapeli
Ominaisuudet: Se käyttää optisia signaaleja tiedon siirtämiseen, ja sen etuja ovat suuri kaistanleveys, pieni häviö ja sähkömagneettisten häiriöiden esto.
Sovellusskenaariot:
Tietoliikenneverkot: runkoverkot, pääkaupunkiseudun verkot ja liityntäverkot.
Internet-kommunikaatio: konesalin liitäntä, kodin laajakaistayhteys.
Teollisuus ja valvonta: teollisuusautomaatioverkko, turvavalvontajärjestelmä.
Erikoisympäristö: korkea sähkömagneettinen alue, jonka on kestettävä häiriöitä.
6. Suojattu kaapeli
Ominaisuudet: metallisuojakerroksella, erinomainen sähkömagneettisten häiriöiden vastainen suorituskyky.
Sovellusskenaario:
Teollinen ohjaus: estää signaalin häiriöt, käytetään ohjausjärjestelmissä, kuten PLC, DCS.
Lääketieteelliset laitteet: korkean tarkkuuden signaalin siirto.
Äänen ja videon siirto: estä signaalikohina.
7. Palonkestävä kaapeli ja paloa hidastava kaapeli
Ominaisuudet: Palonkestävä kaapeli voi jatkaa virran syöttämistä tulipalossa, ja paloa hidastava kaapeli voi hidastaa palon leviämistä.
Sovellusskenaario:
Turvalliset paikat: korkeat rakennukset, metrot, lentokentät, tunnelit jne.
Hätäjärjestelmä: palopumput, hätävalaistus ja viestintäjärjestelmät.
8. Erikoiskaapeli
Ominaisuudet: suunniteltu erityisten ympäristöjen tai tarpeiden mukaan, materiaaleilla ja rakenteilla on omat toiminnot.
Yleisimmät tyypit ja sovellukset:
Kaivoskaapelit: soveltuvat kaivosten ankariin ympäristöihin, kulutusta kestävät ja korkeajännitteen kestävät.
Merenalaiset kaapelit: käytetään vedenalaiseen sähkön tai tiedonsiirtoon.
Korkean lämpötilan kestävät kaapelit: käytetään korkeissa lämpötiloissa, kuten ilmailu- ja terästehtaissa.